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Abstract

We characterize cautiousness, the rate of change of risk tolerance, us-

ing a simple portfolio problem in which agents invest in a stock, a risk-free

bond and an option on the stock. We present three different characteriza-

tions by answering the following three questions: who buys options? who

buys more options per share of the stock? who buys more put options

than shares? These results show how cautiousness determines the demand

for options.
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1 Introduction

Cautiousness, the rate of change of risk tolerance, was introduced by Wilson

(1968) and used by Leland (1980) to study the demand for portfolio insurance.

Cautiousness is equivalent to the ratio of prudence to risk aversion and hence is

a measure of relative prudence. In his paper, Leland assumes a complete market

and shows that ‘other things being equal an agent with higher prudence relative

to her risk aversion is more likely to buy portfolio insurance.’

In this paper we define an agent to be more cautious ‘in the strong sense’

if the minimum of her cautiousness exceeds the maximum of another agents’

cautiousness. In order to characterize this concept we consider the simplest

possible scenario where decision makers can buy or sell a single stock, a risk-

free bond, and a convex derivative on the stock. As an example, the stock could

be the market portfolio, and the derivative could be a call or a put option on the

market portfolio. Using this simple portfolio problem, we present three different

ways to characterize cautiousness by answering the following three questions:

who buys options? who buys more options per share of the stock? who buys

more put options than shares?

To some extent, our analysis provides a direct extension of the results in

Arrow (1965) and Pratt (1964). Arrow and Pratt show that given the choice

between investing in a positive excess-return risky asset and a risk-free asset, an

agent will always invest more in the risky asset than another agent if and only if

she has lower absolute risk aversion. Investment in the risky asset characterizes

absolute risk aversion. We show that, given the additional choice of investing

in an option, an agent has higher cautiousness if and only if she is always more

likely to buy options. Also, she always demands a higher ratio of options to

shares if and only if she has higher cautiousness. Thirdly, assuming the option

is a put option, she buys more options than shares if and only if she has higher

cautiousness. Hence investment in the option characterizes cautiousness.

The scenario where decision makers can buy or sell a single stock, a risk-free

bond, and a convex derivative on the stock is chosen because it is the simplest
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way to characterize cautiousness. Of course, in practice investors can invest in

a range of stocks and derivatives with various strike prices, however if we show

that cautiousness determines demand in our simple scenario then it clearly must

influence choice in more complex scenarios.

Our results here are closely related to the previous work of Leland (1980)

and Brennan and Solanki (1981). As mentioned above Leland (Proposition 1)

shows that an agent with higher cautiousness is more likely to buy portfolio

insurance. Brennan and Solanki obtain a similar result in a lognormal model

where a risk-neutral valuation relationship holds for the valuation of the deriva-

tive. These two studies give a first attempt to characterize cautiousness by the

demand for portfolio insurance (options), albeit using the convexity of an in-

vestor’s optimal terminal payoff function as a proxy of his demand for portfolio

insurance (options), in a market with a complete set of options. It is obvious

that when there is more than one option, it is sometimes difficult to determine

who is an option buyer and who is an option seller as an investor may buy

some options and sell the others; thus this may lead to a problem in the above

characterization of cautiousness. This problem is explained in details by Hara,

Huang and Kuzmics (hereafter HHK) (2007). They show in their Theorem 18

that in an economy where consumers have different constant cautiousness, all

consumers have terminal payoff functions which are initially convex and even-

tually concave except for those who are the most or the least cautious. They

conclude that the results of Leland (1980) and Brennan and Solanki (1981) “are

valid in a two-consumer economy, but do not generalize to an economy with a

large number of consumers with diverse levels of relative risk aversion”.1

In a related paper on the effect of background risk Franke, Stapleton and

Subrahmanyam (hereafter FSS) (1998) also show that a convex payoff is optimal

in a model where background risk increases the cautiousness of an investor with

a HARA class utility function. HHK (2011) extend the above discussion about

the effect of background risk on cautiousness to a more general class of utility

functions.

1See the discussions of Theorem 18 in HHK (2007).

3



Cautiousness has also been used in analyzing other problems. For exam-

ple, Gollier (2001) discusses how an investors’ cautiousness is related to the

local convexity of his consumption rule. He shows that an agent’s consumption

rule is locally convex (concave) if his cautiousness is larger (smaller) than the

weighted average cautiousness.2 In an earlier related study, Carroll and Kimball

(1996) investigate the effect of uncertainty on the curvature of investors’ con-

sumption rules by examining its effect on their cautiousness. They show that if

investors have HARA class utility functions, then uncertainty will increase their

cautiousness, which leads to concave optimal consumption rules. HHK (2007)

show how heterogeneity in cautiousness affects consumers’ portfolio strategies

and the representative consumer’s preference. Gollier (2007) finds that cautious-

ness helps to explain the aggregation of heterogeneous beliefs. Gollier (2008)

further shows that cautiousness plays an important role in understanding saving

and portfolio choices with predictable changes in asset returns.

The structure of this paper is as follows. In Section 2, we introduce the

concept of being more cautious and the expected utility maximizing model

which underlies our analysis. In Section 3, we characterize cautiousness by

answering the question who buys options. In Section 4, we look at the question

of relative option demand: who buys more options per share of the stock?

Then, in Section 5, we ask the question: who buys more options than shares?

In Section 6, we give some numerical examples to illustrate the main results.

In Section 7, we present two applications of the main results: (1) how does

cautiousness determine the demand for stocks v.s. corporate bonds? and (2)

how does background risk affect the demand for options? The final section

concludes the paper.

2See Gollier (2001) page 207, Proposition 52.
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2 The Model

2.1 The Concept of Cautiousness

Cautiousness was first defined by Wilson (1968) based on another risk preference

measure, the Pratt-Arrow risk aversion. Given a utility function u(w), the

function R(w) = −u′′(w)/u′(w) is the well-known Pratt-Arrow risk aversion,

a concept developed by Pratt (1964) and Arrow (1965). The inverse of this

function, T (w) = −u′(w)/u′′(w) is called risk tolerance. Cautiousness is defined

as the rate of change of risk tolerance, i.e., cautiousness is the function C(w) =

T ′(w).3

Cautiousness is also closely related to another well-known risk preference

measure, the measure of prudence. Prudence is defined by Kimball (1990) as

P (w) = −u′′′(w)/u′′(w). We have

(
1

R(w)
)′ = −

(lnR(w))′

R(w)
= −

(ln (−u′′(w)))′ − (lnu′(w))′

R(w)
=

P (w)

R(w)
− 1.

Thus cautiousness is equivalent to the ratio of prudence to risk aversion minus

one.

Now we define a key concept in this paper.

Definition 1 Investor i is said to be more cautious than investor j if there

exists a constant C such that for all w and v, Ci(w) ≥ C ≥ Cj(v), where Ci(w)

and Cj(v) are the cautiousness measures of investors i and j respectively.4

It is straightforward that the condition in the definition is equivalent to

infw Ci(w) ≥ supv Cj(v). The above concept gives an ordering of utility func-

tions in terms of their cautiousness. Since HARA class utility functions have

constant cautiousness they can be ordered perfectly in this way.

3Throughout the paper, we use R and C to denote risk aversion and cautiousness respec-

tively.
4Throughout the paper, when we say for all w and v, Ci(w) ≥ C ≥ Cj (v), we mean for all

w and v in the natural domains of ui(w) and uj(v) respectively.
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2.2 A Simple Portfolio Problem

Assume a two-date economy with starting time 0 and ending time 1. Assume

there is a risk-free bond traded in the market; the risk-free interest rate is

denoted by r. Assume there is a stock available in the market whose prices

at time 0 and 1 are denoted by S0 and S respectively. We assume that the

distribution of the stock price S is continuous and its support, denoted by I,

is a bounded subinterval of [0, +∞). Although we assume that the stock price

follows a continuous distribution, the results obtained in this paper can easily

be extended to the discrete case.5

Assume there is a convex derivative written on the stock that is traded in the

market. A convex derivative is a derivative with a convex payoff function. We

assume that the convex derivative’s payoff function is piecewise differentiable

with a finite number of non-differentiable points and its derivative is bounded

in the entire support. To further reduce technicality, we assume that the convex

derivative’s payoff function is twice differentiable in every differentiable inter-

val.6 Moreover, to ensure that the convex derivative will not degenerate to a

fraction of the stock, we assume that its payoff function is strictly convex for

at least one interior point (S∗) of the support. Note that a call or a put option

with strike price K inside the support interval I, is an example of such a convex

derivative.

Denote the payoff of the derivative at time 1 by a(S). Note since a(S) is a

convex function of S, a(S) is continuous in the interior of the support. Denote

the price of the derivative at time 0 by a0. The interest rate and the current

prices of the stock and the derivative are exogenous.

We stress here that we do not assume all investors are rational utility-

maximizers. We only assume there are some investors who are rational expected-

utility-maximizers whose behaviors in the option market are the subject of this

5The boundedness of the support I is not required for Statement 1 in Theorem 1 to imply

Statement 2, which can clearly be seen from the proof of the theorem.
6This assumption can be relaxed. The proof of Theorem 1 for the case where the convex

derivative’s payoff function is piecewise continuous differentiable is available on request.
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research. These investors are indexed by i = 1, 2, ...; and they are all price-

takers. Investor i’s preference is represented by utility function ui(x). At time

0 he has initial wealth w0i. Assume that at time 0 he buys xi shares of the stock

and yi units of the derivative, and invests the rest of his wealth (w0i−xiS0−yia0)

in the money market. Denote investor i’s wealth at time 1 by wi(S; xi, yi). We

have

wi(S; xi, yi) = (w0i − xiS0 − yia0)(1 + r) + xiS + yia(S). (1)

For brevity we will often write wi(S; xi, yi) simply as wi(S). Note as a(S)

is continuous and piecewise twice differentiable, wi(S) is also continuous and

piecewise twice differentiable.

Investor i maximizes the expected utility of his time 1 wealth wi(S). That

is,

max
xi,yi

Eui(wi(S)). (2)

We obtain the first order conditions:

E[u′

i(wi(S))(S − (1 + r)S0)] = 0, and E[u′

i(wi(S))(a(S) − (1 + r)a0)] = 0,

which can be written as

E[u′

i(wi(S))S]

Eu′

i(wi(S))
= (1 + r)S0, and

E[u′

i(wi(S))a(S)]

Eu′

i(wi(S))
= (1 + r)a0. (3)

The solution, (xi, yi), depends on the utility function, on the prices (S0, a0), and

on the initial wealth of the investor given the interest rate r and the distribution

of the stock price. We assume that all utility functions are strictly increasing,

strictly concave, and three times continuously differentiable. The strict concav-

ity of the utility functions guarantees that the second order condition for the

expected utility maximization problem is always satisfied and a solution to (3)

is a global maximum which is unique.

Before we proceed to analyze the optimal solution, we first introduce some

notation. Let φi(S) ≡ u′

i(wi(S))/Eu′

i(wi(S)). Then (3) can be written as

E[φi(wi(S))S] = (1 + r)S0, and E[φi(wi(S))a(S)] = (1 + r)a0. (4)
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Thus φi(S) can be regarded as investor i’s individual pricing kernel, which she

uses to price the stock and the derivative. As the investor has to take the mar-

ket prices as given, her individual pricing kernel must price the stock and the

derivative correctly; that is, an individual pricing kernel must be admissible. As

is well known, this individual pricing kernel is the Radon-Nikodym derivative

of an equivalent Martingale measure with respect to the true probability mea-

sure. Thus there must exist an equivalent Martingale measure Qi(S) such that

φi(S) =
dQ(S)
dP(S) , where P (S) denotes the true probability measure.

Note that if the market is complete, then there is a unique equivalent Mar-

tingale measure, which leads to a unique admissible pricing kernel: the market

pricing kernel (or the representative investor’s pricing kernel); thus all individ-

ual pricing kernels must be equal to this pricing kernel. In this case, if we are

given the market pricing kernel, as in Leland (1980) and Brennan and Solanki

(1981), it will be straightforward to obtain the relation between an investor’s

demand for the derivative and her utility function.

However, when the market is incomplete, admissible pricing kernels are not

unique. An individual pricing kernel can be any one of the many admissible

pricing kernels, and it cannot be known unless we solve the investor’s portfolio

problem. Thus, in this case, it becomes more difficult to obtain the relation

between an investor’s demand for the derivative and her risk preferences.

To understand the characteristics of admissible pricing kernels, we may note

that as wi(S) is continuous and piecewise twice differentiable and ui(w) is three

times differentiable, φi(S) ≡ u′

i(wi(S))/Eu′

i(wi(S)) is also continuous and piece-

wise twice differentiable. In every differentiable interval, let δi(S) denote the

negative derivative of the logarithm of investor i’s individual pricing kernel, i.e.,

δi(S) ≡ −φ′

i(S)/φi(S). From the definitions of φi(S) we have

δi(S) = Ri(wi(S))w′

i(S). (5)

In every such interval, as wi(S) is twice differentiable and Ri(w) is differentiable,

δi(S) is also differentiable; then it is bounded in any bounded subinterval. Thus

δi(S) is well defined except for a finite number of points, at which the con-
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vex derivative’s payoff function is not differentiable, and it is bounded in any

bounded subinterval of the interior of the support. As is well known, a bounded

and almost everywhere continuous function is Riemann integrable; hence δi(S)

is Riemann integrable. It follows that for any S and a, two points in the interior

of the support, we have

ln
φi(S)

φi(a)
= −

∫ S

a

δi(x)dx. (6)

We now present a lemma which shows some characteristics of admissible

pricing kernels.

Lemma 1 Assume two pricing kernels φi(S) and φj(S) are continuous and

piecewise continuously differentiable. If they both price the stock correctly, then

the following statements are true.

1. The two pricing kernels must intersect at least twice.

2. δi(S) and δj(S) must intersect at least once.

3. Assume δi(S) crosses δj(S) once at S = b. Then φi(b) 6= φj(b).

4. If δi(S) crosses δj(S) once, then φi(S) crosses φj(S) twice.

Proof: See Appendix A.

This lemma will be used repeatedly later in the proofs of our main results

in this paper.

3 Who Buys Options?

In this section we will characterize the concept of cautiousness and show that

cautiousness is a measure of an investor’s motive to buy options. In the model

above, where investors allocate their wealth between a stock, a convex derivative

on the stock and a risk free bond, suppose there are two investors: i who buys yi

derivatives and j who buys yj derivatives. We establish conditions under which

the sign(yi) ≥ sign(yj ), i.e. i is more likely to buy options than j. We now

present our first main result.
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Theorem 1 The following two statements are equivalent.

1. Investor i is more cautious than investor j.

2. Given any initial wealth, stock price, and derivative price such that there

is a solution to problem (3) for both investors i and j, investor j holds a

(strictly) positive position in the derivative only if investor i does so, i.e.,

yj ≥ (>)0 only if yi ≥ (>)0.

The proof of the above theorem is quite complicated, and its details can be

found in Appendix D. But to help readers understand the proof, we now explain

the basic idea used to prove that Statement 1 implies Statement 2. The proof

is by contradiction. Suppose that Statement 1 does not imply Statement 2, i.e.,

although investor i is more cautious than investor j, it happens that investor

i holds a negative position in the derivative while investor j holds a strictly

positive position in the derivative, or investor i holds a strictly negative position

in the derivative while investor j holds a positive position in the derivative. We

need only to show that in either case we have a contradiction. The key is to

prove that in either case “ the two investors’ individual pricing kernels can cross

each other at most twice.” We may call this the “insufficient crossing property.”

Note that if insufficient crossing happens, then it can be shown that the

two pricing kernels give strictly different prices for the convex derivative.7 This

implies that they can not both price the derivative correctly, which leads to a

contradiction. From this we can conclude that Statement 1 implies Statement

2.

To prove the insufficient crossing property, we need only prove that the

derivative of the logarithm of investor i’s individual pricing kernel crosses the

derivative of the logarithm of investor j’s individual pricing kernel at most

once. But as the payoff function of the derivative is only piecewise (twice)

differentiable, the investors’ individual pricing kernels are only piecewise (twice)

differentiable. This causes some complexity to the proof.

7Franke, Stapleton and Subrahmanyam (1999) show that when two pricing kernels cross

each other twice, the more convex pricing kernel of the two gives lower prices for all options.
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If however the payoff function of the derivative were twice differentiable in

the entire support, the situation would be much easier. To illustrate the basic

idea of the proof, we now explain the proof for this special case under the

assumption that utility functions are HARA class. Note as utility functions are

HARA class, we have for all w and v, Ci(w) ≡ Ci > Cj ≡ Cj(v).

As is explained in the last section, δi(S) denotes the negative derivative of the

logarithm of investor i’s individual pricing kernel, i.e., δi(S) ≡ −φ′

i(S)/φi(S). It

is straightforward that if the derivative of 1/δi(S) can not cross the derivative of

1/δj(S), δi(S) can cross δj(S) at most once. To prove the derivative of 1/δi(S)

cannot cross the derivative of 1/δj(S), applying (5) and differentiating δi(S)

with respect to S, we obtain

δ′i(S) = −Ci(wi(S))δ2
i (S) + Ri(wi(S))w′′

i (S). (7)

If δi(S) is non-zero, noting that Ci(wi(S)) ≡ Ci, we can rewrite it as

(
1

δi(S)
)′ = Ci −

Ri(wi(S))w′′

i (S)

δ2
i (S)

.

Note that if investor i holds a negative position in the derivative while investor

j holds a strictly positive position in the derivative or investor i holds a strictly

negative position in the derivative while investor j holds a positive position in

the derivative, then w′′

i (S) ≤ 0 ≤ w′′

j (S). Also note that as all utility functions

are strictly increasing and strictly concave guarantees, risk aversion (Ri(wi(S)))

is always strictly positive. As we have Ci > Cj, it follows that ( 1
δi(S))

′ > ( 1
δj(S) )

′.

This implies that δi(S) can cross δj(S) at most once and they are never equal

to each other except for one point. As δi(S) (δj(S)) is the derivative of the

logarithm of investor i’s (j’s) individual pricing kernel, this further implies that

investor i’s individual pricing kernel can cross investor j’s individual pricing

kernel at most twice and they are never equal to each other except for two

points. But as the two individual pricing kernels both price the underlying

stock correctly, they must cross each other at least twice.8 Thus they must

cross each other exactly twice and they are never equal to each other except for

8See Statement 1 of Lemma 1.
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two points. Then from Franke, Stapleton and Subrahmanyam (1999) investor

i’s individual pricing kernel gives strictly higher prices to all convex derivatives

than investor j’s individual pricing kernel.9 As both individual pricing kernels

are admissible, this causes a contradiction.

When the payoff function of the derivative is not twice differentiable in the

entire support but is piecewise (twice) differentiable, and when the utility func-

tions are not HARA class, the proof is similar in spirit but much more technical,

as is shown in Appendix D.

The above theorem gives an ordering of utility functions in terms of the

motive to buy options. This ordering is perfect for HARA class utility function

as they all have constant cautiousness. Thus if investor i and j have constant

cautiousness Ci and Cj, i.e., they have HARA class utility functions, and Ci >

Cj , then investor i will have a stronger motive to buy options. Moreover, as

stated earlier, for an exponential utility function, cautiousness is zero while any

utility function which displays decreasing absolute risk aversion has positive

cautiousness and any utility function which displays increasing absolute risk

aversion has negative cautiousness. Thus according to the above theorem, any

investor who has decreasing (increasing) absolute risk aversion always has a

stronger (weaker) motive to buy options than an investor with an exponential

utility function.

Furthermore, the theorem also implies the role of prudence in explaining

the demand for options. According to Leland (1968) and Kimball (1990), an

investor is prudent (imprudent) if his utility function has a positive (negative)

third derivative. Consider the situation when one investor is prudent while

another is imprudent. In this case, as cautiousness can be written as C(w) =

u′′′(w)u′(w)/u′′2(w)− 1, the first investor’s cautiousness is larger than negative

unity while the second investor’s cautiousness is smaller than negative unity.

According to Theorem 1, this implies that the first investor has a stronger

motive to buy the convex derivative. Thus a prudent investor has a stronger

motive to buy options than an imprudent investor.

9See also the proof of Lemma 7 in Appendix D.
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4 Who Buys More Options Per Share of the

Stock?

In the last section we characterized cautiousness by answering the question who

buys options. Then, in Section 5, In this section we characterize cautiousness

by answering another interesting question: who buys more options per share of

the stock? Recall that in the model in Section 2, xi is the number of shares

of stock demanded by investor i. Then yi/xi is the relative amount of options

demanded. We now establish conditions under which the ratio yi/xi exceeds

yj/xj. We present the following result.

Theorem 2 The following two conditions are equivalent.

1. Investor i is more cautious than investor j.

2. Given any initial wealth, stock price, and derivative price such that there

is a solution to problem (3) for both investors i and j, if xiS + yia(S) is

strictly monotone, then xj > (<)0 implies yi

xi
≥ (≤)

yj

xj
; if xjS + yja(S) is

strictly monotone, then xi > (<)0 implies yi

xi
≥ (≤)

yj

xj
.

Proof: See Appendix B.

The condition that xiS + yia(S) or xjS + yja(S) is monotone is necessary

for the conclusion in the theorem; this is shown by contradiction in Section 6

by using some numerical examples.10

Also note that this condition is equivalent to that investor i’s terminal wealth

is a monotone function of the underlying stock price S. To understand this

condition, consider the case where you have bought some units of a stock index.

If you set up a normal portfolio insurance strategy by using an option on the

index, your terminal wealth will be a monotone increasing function of the index

unless you over-insure your stock index. Thus if you do not over-insure your

stock index, the condition in the theorem will be satisfied.

10See the discussions at the end of Section 6.
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Consider another case where you have written some put options on a stock.

If you buy some shares of the underlying stock to cover these put options, your

terminal wealth will be a monotone decreasing function of the stock price unless

you over-cover your put options. Thus if you do not over-cover your put options,

the condition in the theorem will be satisfied.

We may relate this result to a central result in Leland (1980) and Brennan

and Solanki (1981) that if investor i is more cautious than investor j then

f ′′

i (x)
f ′

i
(x) ≥

f ′′

j (x)

f ′

j
(x) , where fi(x) and fj(x) are investor i and j’s optimal terminal

payoff functions and x is the aggregate wealth.11 Now think of the aggregate

wealth as a stock. If we interpret f ′

i (x) and f ′′

i (x) as investor i’s shares of the

stock and his position in options on the stock respectively, then the connection

of these two results is straightforward. However, we must note that the above

theorem requires that xiS+yia(S) or xjS+yja(S) is monotone, and it is shown

in Section 6 that if this condition is violated, then the result in the theorem will

not hold. This shows that the conclusions reached by Leland (1980) and Brennan

and Solanki (1981) in a market with a complete set of contingent claims cannot

be simply extended to an incomplete market.

5 Who Buys More Put Options than Shares?

In Section 4 we characterized cautiousness by answering the question who buys

options. Then, in Section 5, we characterized cautiousness by answering the

question who buys more options per share of the stock. Now, in this section

we characterize cautiousness by answering a third question: who buys more put

options than shares? Using the notation introduced in Section 3, we ask when

is yi ≥ xi and when is yi ≤ xi. The relevance of this question is that the answer

can determine, for example, the conditions under which an agent may under

(over) insure a stock portfolio.

Unlike the other parts of the paper, in this section we focus only on options,

11See also the discussions about the result in Leland (1980) and Brennan and Solanki (1981)

on page 657 in HHK (2007).
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a special type of convex derivatives whose payoffs are two-segment and piecewise

linear. It is obvious that an option’s payoff function is strictly convex at only

one point, the strike price, which connects the two segments. According to the

definition of a convex derivative, we require the strike price to be an interior

point of the stock price distribution’s support.

Moreover, as the portfolio problem with a call option can be transformed

into the portfolio problem with a put option by using the put-call parity, without

loss of generality, we assume the derivative is a put option.

We have the following result.

Theorem 3 If the convex derivative is a put option, then the following three

conditions are equivalent.

1. Investor i is more cautious than investor j.

2. Given any initial wealth, stock price, and derivative price such that there

is a solution to problem (3) for both investors i and j, if xi − yi ≥ (>)0,

then xj − yj ≥ (>)0.

3. Given any initial wealth, stock price, and derivative price such that there

is a solution to problem (3) for both investors i and j, if xj ≥ (>)0, then

xi ≥ (>)0.

Proof: See Appendix C.

Note as the slope of the first segment of a put option’s payoff function is

minus one, xi−yi is the slope of the first segment of investor i’s terminal wealth

function wi(S). Similarly, xi is the slope of the second segment of investor i’s

terminal wealth function wi(S).

Statement 2 of the theorem states that investor i buys (strictly) more shares

than put options only if investor j does so or investor j buys (strictly) more put

options than shares only if investor i does so. Thus the theorem tells us that a

more cautious investor tends to buy more put options than shares.

Now consider some special cases. It is well known that if xi > 0 and yi = xi,

investor i is said to hold a fully-insured portfolio. If xi > 0 and yi ∈ (0, xi),
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investor i is said to hold a partially-insured portfolio. If xi > 0 and yi > xi,

investor i is said to hold an over-insured portfolio. From the above theorem we

have the following result.

Corollary 1 Assume investor i is more cautious than investor j. Then investor

j buys an over-insured portfolio only if investor i does so, and investor i sells

an over-insured portfolio only if investor j does so.

Proof: If investor j buys an over-insured portfolio, then we have xj > 0 and

xj−yj < 0. Applying Theorem 3, we obtain xi > 0 and xi−yi < 0, i.e., investor

i buys an over-insured portfolio. Similarly, we can show that investor i sells an

over-insured portfolio only if investor j sells an over-insured portfolio. Q.E.D.

6 Numerical Examples of Option Demand

In this section we present some numerical examples. These are designed to

illustrate the conclusions of the Theorems established above. Table 1 shows

optimal stock and option demands given three different sets of (S0, a0) prices.

In part a), S0 = 84 and a0 = 3.00. Marginal utility is of the HARA class with

u′(w) = (w + α)−γ .

As discussed above, for this utility function cautiousness is a constant with

C(w) = 1/γ and absolute risk aversion R(w) = γ/(α + w). Cautiousness is

shown for four different levels of γ in column 3 of the Table. Risk aversion is

shown in column 4 (for α = 20) and column 8 (for α = 70). The first four rows

of the table assume current wealth w0 = 100 and the next four rows assume

current wealth w0 = 200. For all the examples we assume a 1-year horizon and

an interest rate of 5%. The stock has a payoff with four states (120, 100, 80, 70)

with equal probability. The option is a call option with a strike price of 100.

Given these data, we solve equations (3) for the optimal stock and option

demands. For α = 20, these are shown in columns 5 and 6 respectively. For
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α = 70, these are shown in columns 9 and 10 respectively. In part b) of the

Table the results are shown for a different set of prices, S0 = 85 and a0 = 3.70.

Then, in part c) they are shown for S0 = 86 and a0 = 4.50.

Observing the results, first note that the relative option demand, y/x, is

unaffected either by wealth w0 or by the subsistence parameter α. For example,

given C = 2.00 in part b), y/x = 0.23 for all w0 and α combinations. This

illustrates the result of Rubinstein (1974). Looking at the column headed y,

we observe that the option demand given C = 0.25 is never positive unless the

demand given C = 2.00 is positive. Also, the option demand given C = 2.00

is only negative if the demand given C = 0.25 is negative. These results are

consistent with Theorem 1.

Looking at the results in part a) or part b) it is tempting to conclude that

the relative option demand y/x increases with C. However, the results in part

c) of the Table show that this is not always the case. Given the prices S0 = 86

and a0 = 4.50, the short position in the option increases with C. However, the

relative position y/x decreases (from -1.65 to -1.75). Note that here the payoff

xS + ya(S) is not monotonic. This case illustrates the need for the condition in

Theorem 2.

7 Applications

In this section we consider two applications of the above results. First, stocks are

call options on the assets of the firm. Also, corporate bonds are portfolios of the

assets and options on the assets. It follows that we can use the three theorems

to explain how cautiousness determines the demand for stocks v.s. corporate

bonds. Second, in the HARA case, background risk increases cautiousness.

Hence, we can use the three theorems to compare the derivative portfolios of

agents with and without background risk.
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7.1 Demand for Stocks v.s. Corporate Bonds

Consider a firm which has outstanding bonds and shares of stock. Assume the

corporate bonds have no coupons and they all have the same maturity. Assume

both the stock and the bonds are traded in the open market. Consider investors

who invest their money in the firm’s bonds and shares. Assume there is also a

money market where they can borrow and lend money at the risk-free interest

rate. Thus these investors can form portfolios of the money market instrument,

the firm’s bonds and shares. Assume the investors maximize their expected

utility of their investments in such portfolios.

Let a0 and B0 be the initial total value of the stock and the bonds respec-

tively. Let the value of the company at the maturity of the bond be S. Let

the face value of the bonds be X. Then, as was first pointed out by Merton

(1974), the total payoff of the stock at the maturity of the bonds is (S − X)+,

which implies that the shares are just call options on the firm value. Moreover,

the payoff of the bonds at maturity is S − (S −X)+. Denote investor i’s initial

wealth by wi0. Assume he buys xi fraction of the bonds and yi fraction of the

stock and invests the rest of his wealth in the money market. Then the value of

his investment at maturity of the bonds is

wi(S) = (wi0 − xiB0 − yia0)(1 + r) + xi(S − (S − X)+) + yi(S − X)+,

where r is the risk-free interest rate. Thus the investor decides his optimal

portfolio strategy by solving problem (2), where wi(S) is defined above. We

have the following result.

Proposition 1 Assume investor i is more cautious than investor j and for both

investor i and investor j there is a solution to problem (2). Then the following

three statements are true.

1. Investor j holds a (strictly) positive position in the stock only if investor i

does so, i.e., yj ≥ (>)0 only if yi ≥ (>)0, and investor i holds a (strictly)

positive position in the corporate bonds only if investor j does so, i.e.,

xi ≥ (>)0 only if xj ≥ (>)0.
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2. Investor j buys (strictly) more shares of the stock than the corporate bonds

only if investor i does so, i.e., yj ≥ (>)xj only if yi ≥ (>)xi.

3. If investor i holds a strictly positive position in the corporate bonds and in

the stock, i.e., xi > 0 and yi > 0, then investor i holds a larger position in

the stock per unit of his position in the bond than investor j, i.e., yi

xi
≥

yj

xj
,

and if investor j holds a strictly negative position in the corporate bonds

and in the stock, i.e., xj < 0 and yj < 0, then investor i holds a smaller

short position in the stock per unit of his short position in the bond than

investor j, i.e., yi

xi
≤

yj

xj
.

Proof: To prove the first statement, we have S − (S − X)+ = X − (X − S)+

and (S − X)+ = S + (X − S)+ − X. Hence the terminal payoff of investor i’s

investment can be rewritten as

wi(S) = Ai(xi, yi) + yiS + (yi − xi)(X − S)+ , (8)

where Ai(xi, yi) = (wi0−xiB0−yia0)(1+r)+(xi−yi)X. In this case the original

investment problem becomes a portfolio problem which involves a risk-free bond,

a risky asset, and a put option on the risky asset. As investor i is more cautious

than investor j, according to Theorem 3, investor j holds a (strictly) positive

position in the risky asset only if investor i does so, i.e., yj ≥ (>)0 implies

yi ≥ (>)0, and investor i holds a (strictly) larger position in the risky asset

than in the call option only if investor j does so, i.e., yi − (yi − xi) = xi ≥ (>)0

implies yj − (yj − xj) = xj ≥ (>)0. Thus the first statement is proved.

In order to prove the second and third statements, we rewrite investor i’s

terminal payoff as

wi(S) = (wi0 − xiB0 − yia0)(1 + r) + xiS + (yi − xi)(S − X)+.

Thus the original investment problem is rewritten as a portfolio problem which

involves a risk-free bond, a risky asset, and a call option on the risky asset. As

investor i is more cautious than investor j, from Theorem 1, investor j holds

a (strictly) positive position in the call option only if investor i does so, i.e.,
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yj − xj ≥ (>)0 implies yi − xi ≥ (>)0. That is, investor j buys (strictly) more

shares than bonds only if investor i buys (strictly) more shares than bonds.

This proves the second statement.

To prove the third statement, notice that if xi > 0, from the first statement,

we must have xj > 0. Thus if we also have yi > 0, then S + yi−xi

xi
(S − X)+

will be monotone. Now applying Theorem 2, we obtain yi−xi

xi
≥

yj−xj

xj
which

implies yi

xi
≥

yj

xj
. This proves the first half of the statement. The second half

can be similarly proved. This completes the proof. Q.E.D.

Roughly speaking, Statement 1 of the above proposition tells us that a more

cautious investor is more likely to buy stocks and less likely to buy corporate

bonds. Statement 2 tells us that a more cautious investor is more likely to buy

more shares of stocks than corporate bonds. Statement 3 tells us that a more

cautious investor buys more shares of stocks relative to corporate bonds. The

Proposition highlights the significance of cautiousness in explaining the demand

for stocks and corporate bonds.

7.2 Impact of Background Risk on Demand for Options

We have shown that cautiousness measures an investor’s motive to buy options.

In this section we investigate the impact of background risk on an investor’s

cautiousness and hence on his motive to buy options. This topic has been

discussed by FSS (1998), Gollier (2001), and HHK (2011).

Given a utility function, u(x), when there is a background risk ε, as usual,

we denote the derived utility function by û(x). For additive background risk ε,

û(x) ≡ Eu(x + ε), and for multiplicative background risk ε, û(x) ≡ Eu(xε).

Let P (x) and R(x) denote the absolute prudence and absolute risk aversion of

the original utility function respectively. Let P̃ (x) and R̃(x) denote the absolute

prudence and absolute risk aversion of the derived utility function respectively.

It has been shown that if for all x, P (x) ≥ kR(x), then for all x, P̃ (x) ≥ kR̃(x),

20



where k > 0 is a constant.12 HHK derived a sufficient condition for the presence

of additive background risk to increase an investor’s cautiousness. They showed

that if an investor has decreasing and convex cautiousness, then his cautiousness

will be uniformly higher when exposed to additive background risk.

In this section we consider both additive and multiplicative background risks.

We have the following result.

Lemma 2 (Carroll and Kimball (1996)) Assume an investor’s utility func-

tion u(x) has positive third derivative and its cautiousness is higher than a

constant. If the investor has an additive or multiplicative background risk, the

cautiousness of the derived utility function will also be higher than the constant.

This result was first presented by Carroll and Kimball (1996) in their seminal

paper on the concavity of the consumption function. Its proof can be found in

Carroll and Kimball (1996) or Gollier (2001).

Now combining the above lemma and the three main theorems in this paper

we can obtain the following result.

Proposition 2 Assume investors i and j have HARA class utility functions

with identical constant cautiousness. If investor i has an additive or multiplica-

tive background risk, then given any initial wealth, stock price, and derivative

price such that there is a solution to problem (3) for both investors i and j, the

following statements are true.

1. Investor j holds a (strictly) positive position in the derivative, i.e., yj ≥

(>)0, only if investor i does so, i.e., yi ≥ (>)0.

2. If xi > 0, xj > 0, and S+ yi

xi
a(S) or S+

yj

xj
a(S) is monotone, then investor

i applies a larger weight to the option in his optimal risky portfolio, i.e.,

yi

xi
≥

yj

xj
, and if xi < 0, xj < 0, and S+ yi

xi
a(S) or S+

yj

xj
a(S) is monotone,

then investor i applies a smaller weight to the derivative in his optimal

risky portfolio, i.e., yi

xi
≤

yj

xj
.

12See, for example, Proposition 23, page 115, Gollier (2001).
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3. Assume the derivative is a put option. If investor i buys (strictly) more

shares of the stock than units of the put option, i.e., xi − yi ≥ (>)0, then

investor j buys (strictly) more shares of the stock than the option, i.e.,

xj − yj ≥ (>)0.

Proof: Note that a HARA utility function has constant cautiousness, say C.

It follows from Lemma 2 that the cautiousness of the derived utility function

is higher than C.13 Hence investor i is more cautious than investor j. Now

applying Theorems 1, 2, and 3, we immediately prove that the three statements

are true. Q.E.D.

The above result explains the impact of background risk on portfolio strate-

gies involving options. In particular, it shows that if the utility is HARA class

then background risk strengthens an investor’s motive to buy options.

FSS (1998) also studied the impact of background risk on an investor’s de-

mand for options. They focused on the case where background risk is additive.

They showed that in an economy in which investors have identical constant

positive cautiousness the investors without background risk will have globally

concave optimal payoff functions, which they interpreted that background risk

makes an investor more likely to buy options.

The difference between Proposition 2 and FSS’s main result is worth noting

although they give similar conclusions. FSS’s model relies on the assumption

that there is a complete market of contingent claims on the stock and the as-

sumption that all investors are expected utility maximizers and have identical

cautiousness, while Proposition 2 does not need these assumptions at all. Note

Proposition 2 is even valid when many other investors are not rational utility

13Note in the proof of Proposition 2 the inequalities are strict for additive (multiplicative)

background risk unless the utility function has constant absolute (relative) risk aversion, that

is, it is exponential (power or logarithmic) utility. Hence if a utility function is HARA class,

given an additive (multiplicative) background risk, the cautiousness of the derived utility

function will be strictly higher unless the utility function is exponential (power or logarithmic)

utility.
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maximizers.

Lemma 2 can also be used to extend the main result in FSS (1998) to the

case where investors have either additive or multiplicative background risk or

both.

Moreover, combining Lemma 2 and Proposition 1, we can derive a result

about the effect of background risk on the demand for stocks and corporate

bonds. As in Proposition 2, consider two investors (i and j) who have HARA

class utility functions with identical constant cautiousness. Suppose investor i

has background risk while j does not. Then from Lemma 2, investor i is more

cautious than investor j. Now applying Proposition 1, we conclude that the

three statements of Proposition 1 are true. Roughly speaking, this result tells

us that background risk has the following effects on the demand for stocks and

corporate bonds: it makes an investor more likely to buy stocks and less likely

to buy corporate bonds; it makes an investor more likely to buy more shares

of stocks than corporate bonds; it makes an investor buy more shares of stocks

relative to corporate bonds.

8 Conclusions

An individual investor’s demand for derivatives depends upon a number of fac-

tors: the wealth of the investor, the prices of the stocks and the derivatives, and

the utility function of the investor. In this paper we have considered the simple

choice of investment in a stock, a risk-free bond and an option on the stock. We

establish that it is the cautiousness of the investor’s utility function that char-

acterizes her demand for derivatives and in particular for put and call options.

The cautiousness of a utility function is equivalent to the ratio of prudence to

risk aversion. Comparing two investors, if i is more cautious than j, then i

always buys options if j does so (Theorem 1). Also, if i is more cautious than j,

then in most cases i buys more options per share of the stock than j (Theorem

2). Also, if i is more cautious than j, then if j over insures her portfolio using

put options then so does i (Theorem 3).
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Tables

Table 1: a) Stock and Option Demand (84, 3.00)

γ C R(w) x y y/x R(w) x y y/x

α=20 α=70

S0 84 4 0.25 4
20+w

0.22 0.54 2.51 4
70+w

0.30 0.76 2.52

a0 3.00 2 0.50 2
20+w

0.42 1.20 2.83 2
70+w

0.59 1.67 2.82

w0 100 1 1.00 1
20+w

0.80 2.85 3.55 1
70+w

1.12 3.99 3.56

0.5 2.00 0.5
20+w

1.36 7.48 5.50 0.5
70+w

1.91 10.48 5.50

S0 84 4 0.25 4
20+w

0.40 1.00 2.52 4
70+w

0.49 1.22 2.52

a0 3.00 2 0.50 2
20+w

0.78 2.20 2.83 2
70+w

0.95 2.69 2.84

w0 200 1 1.00 1
20+w

1.47 5.24 3.55 1
70+w

1.80 6.37 3.55

0.5 2.00 0.5
20+w

2.50 13.77 5.50 0.5
70+w

3.05 16.78 5.51

1. Table 1 a) shows the optimal stock and option demands given (S0, a0) = (84, 3.00).

2. Investors have HARA utility with marginal utility u′(w) = (w + α)−γ with

α = 20, 70
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Table 1 b) Stock and Option Demand (85, 3.70)

γ C R(w) x y y/x R(w) x y y/x

α=20 α=70

S0 85 4 0.25 4
20+w

0.31 -0.06 -0.19 4
70+w

0.43 -0.08 -0.19

a0 3.70 2 0.50 2
20+w

0.61 -0.08 -0.14 2
70+w

0.85 -0.11 -0.13

w0 100 1 1.00 1
20+w

1.18 -0.03 -0.03 1
70+w

1.66 -0.05 -0.03

0.5 2.00 0.5
20+w

2.21 0.50 0.23 0.5
70+w

3.08 0.71 0.23

S0 85 4 0.25 4
20+w

0.56 -0.10 -0.19 4
70+w

0.69 -0.13 -0.19

a0 3.70 2 0.50 2
20+w

1.12 -0.15 -0.14 2
70+w

1.36 -0.19 -0.14

w0 200 1 1.00 1
20+w

2.18 -0.06 -0.03 1
70+w

2.65 -0.07 -0.03

0.5 2.00 0.5
20+w

4.05 0.93 0.23 0.5
70+w

4.93 1.15 0.23

1. Table 1 b) shows the optimal stock and option demands given (S0, a0) = (85, 3.70).

2. Investors have HARA utility with marginal utility u′(w) = (w + α)−γ with

α = 20, 70
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Table 1c) Stock and Option Demand (86, 4.50)

γ C R(w) x y y/x R(w) x y y/x

α=20 α=70

S0 86 4 0.25 4
20+w

0.47 -0.78 -1.65 4
70+w

0.66 -1.09 -1.65

a0 4.50 2 0.50 2
20+w

0.95 -1.58 -1.67 2
70+w

1.33 -2.22 -1.67

w0 100 1 1.00 1
20+w

1.92 -3.25 -1.70 1
70+w

2.69 -4.56 -1.70

0.5 2.00 0.5
20+w

3.85 -6.74 -1.75 0.5
70+w

5.39 -9.44 -1.75

S0 86 4 0.25 4
20+w

0.87 -1.43 -1.65 4
70+w

1.05 -1.74 -1.65

a0 4.50 2 0.50 2
20+w

1.75 -2.91 -1.67 2
70+w

2.12 -3.54 -1.67

w0 200 1 1.00 1
20+w

3.53 -5.99 -1.70 1
70+w

4.30 -7.29 -1.70

0,5 2.00 0.5
20+w

7.08 -12.41 -1.75 0.5
70+w

8.62 -15.09 -1.75

1. Table 1 c) shows the optimal stock and option demands given (S0, a0) = (86, 4.50).

2. Investors have HARA utility with marginal utility u′(w) = (w + α)−γ with

α = 20, 70
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Appendix A Proof of Lemma 1

We first prove that the two pricing kernels must intersect at least twice. By contra-

diction, suppose φi(S) crosses φj(S) only once at a from above.14 We have

E(φi(S) − φj(S))S = E(φi(S) − φj(S))(S − a).

Suppose φi(S) and φj(S) are not identical, i.e., there exists a point b (in the

support of the stock price distribution) such that φi(b) 6= φj(b). As both φi(S) and

φj(S) are continuous at S = b, there must exist a neighborhood of b with positive

probability mass such that for all S in this set, φi(S) 6= φj(S). This, together with

the fact that φi(S)− φj(S) is non-negative when S < a and non-positive when S > a,

implies that E(φi(S) − φj(S))(S − a) < 0. Thus we obtain E(φi(S) − φj(S))S < 0.

This inequality contradicts the assumption that both pricing kernels price the stock

correctly. This proves the first statement.

We now prove the second statement. Without loss of generality, assume φi(S)

crosses φj(S) at b.15 As both φi(S) and φj(S) are continuous, we must have φi(b) =

φj(b). From (6) we have

− ln
φi(S)

φj(S)
=

∫ S

b

(δi(x) − δj(x))dx. (9)

From the above equation if δi(S) − δj(S) does not change sign at any point, then

φi(S) − φj(S) has opposite signs at the two sides of b. Thus φi(S) − φj(S) can only

change sign once at S = b. This contradicts the first statement. This proves the

second statement.

We now prove the third statement. Assume δi(S) crosses δj(S) once at S = b. By

contradiction, suppose φi(b) = φj(b). From (9) it is clear that φi(S)− φj(S) will have

the same sign at the two sides of b. This implies φi(S) does not cross φj(S) which is

impossible as both of their expectations are unity. This proves the third statement.

We now prove the fourth statement. As φi(S) must cross φj(S) and δi(S) must

cross δj(S), without loss of generality, assume φi(S) − φj(S) changes sign at b and

δi(S)− δj(S) changes sign from positive to negative at a. From the third statement it

is clear that a 6= b.

14Note two pricing kernels must intersect at least once because otherwise their expectations

cannot both be unity.
15See Footnote 11.
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• Suppose b < a. Then by applying (9) we can see that from left to right, φi(S)−

φj(S) is negative at the left side of b, increases to zero at b, and keeps increasing

to positive for S ∈ [b, a). It starts to decrease at a; thus it can change sign at

most one more time from positive to negative at the right side of a.

• Suppose b > a. Then again by applying (9) we can see that from right to left,

φi(S) − φj(S) is negative at the right side of b, increases to zero at b, and keeps

increasing to positive for S ∈ [a, b). It starts to decrease at a; thus it can change

sign at most one more time from positive to negative at the left side of a.

Thus in both cases φi(S)−φj(S) can change sign at most twice on the entire support.

But according to the first statement, it must change sign at least twice. Thus it must

change sign exactly twice. This completes the proof. Q.E.D.

Appendix B Proof of Theorem 2

To prove the theorem, we need the following lemma.

Lemma 3 Assume 1 + ya′(S) > (<)0. Let Ŝ = S + ya(S) = h(S) and â(Ŝ) ≡

a(h−1(Ŝ)). Then â(Ŝ) is a convex and piecewise twice differentiable function of Ŝ and

strictly convex at Ŝ∗ ≡ S∗ + ya(S∗).

Proof: As Ŝ = S + ya(S) = h(S) and â(Ŝ) ≡ a(h−1(Ŝ)), we have dâ(Ŝ)

dŜ
= a′(h−1(Ŝ))

h′(h−1(Ŝ))
.

Simplifying, we obtain
dâ(Ŝ)

dŜ
=

a′(S)

1 + ya′(S)
. (10)

As a(S) is convex on the entire support and strictly convex at S = S∗, a′(S) is

increasing with S and strictly increasing at S = S∗. Because S = h−1(Ŝ) is strictly

increasing with Ŝ, this implies that a′(S) is increasing with Ŝ and strictly increasing

at Ŝ = Ŝ∗ ≡ h(S∗). But we have d
dx

x
1+yx

= 1
(1+yx)2

> 0, i.e., for all x such that

1+yx > (<)0, x
1+yx

is a strictly increasing function of x. This implies that a′(S)
1+ya′(S)

is

increasing with Ŝ and strictly increasing at Ŝ = Ŝ∗ ≡ h(S∗). From (10) it follows that

dâ(Ŝ)

dŜ
is increasing with Ŝ and strictly increasing at Ŝ = Ŝ∗. Thus we conclude that

â(Ŝ) is a convex function of Ŝ and strictly convex at Ŝ∗ ≡ h(S∗). Moreover, as a(S)

is piecewise twice differentiable, â(Ŝ) is also piecewise twice differentiable. Q.E.D.

With the help of the above lemma, we now prove the theorem. We first prove that

the first statement implies the second statement.
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When xi 6= 0 and xj 6= 0, let ỹi = yi/xi and ỹj = yj/xj . Suppose S + ỹia(S)

is strictly monotone. Let Ŝ = h(S) ≡ S + ỹia(S). As h(S) is strictly monotone, it

follows that S = h−1(Ŝ). Let â(Ŝ) ≡ a(h−1(Ŝ)).

From Lemma 3, â(Ŝ) is a convex and piecewise twice differentiable function of Ŝ

and strictly convex at Ŝ∗ ≡ h(S∗). Thus the original investment problem with stock S

and convex derivative a(S) is transformed into a new investment problem with stock

Ŝ and convex derivative â(Ŝ). From (1) in the original problem, investor i’s terminal

wealth is

wi(S; xi, ỹi) = (w0i − xi(S0 + ỹia0))(1 + r) + xi(S + ỹia(S)),

and investor j’s terminal wealth is

wj(S; xj , ỹj) = (w0i − xj(S0 + ỹja0))(1 + r) + xj(S + ỹja(S)).

If we let Ŝ0 ≡ S0 + ỹia0 and â0 ≡ a0, then in the transformed problem investor i’s

terminal wealth is wi(Ŝ; xi, 0) = (w0i − xiŜ0)(1 + r) + xiŜ, and investor j’s terminal

wealth is

wj(Ŝ; xj , ỹj − ỹi) = (w0i − xj(Ŝ0 + (ỹj − ỹi)â0))(1 + r) + xj(Ŝ + (ỹj − ỹi)â(Ŝ)).

From the above two equations, we can clearly see that in the transformed problem

investor i has xi shares of the stock Ŝ and zero position in the convex derivative â(Ŝ)

in his optimal portfolio while investor j’s optimal positions in the stock Ŝ and the

convex derivative â(Ŝ) are xj and xj(ỹj − ỹi) respectively. Now assume investor i is

more cautious than investor j. Applying Theorem 1 to the transformed problem, we

immediately conclude that we must have xj(ỹj − ỹi) ≤ 0. If xj > (<)0, this implies

that ỹj − ỹi ≤ (≥)0, i.e., ỹi ≥ (≤)ỹj .

The proof for the case where S+ ỹja(S) is strictly monotone is similar. This proves

that the first statement implies the second statement.

The proof of the converse is very similar to part of the proof for Theorem 1; thus

it is omitted. Q.E.D.

Appendix C Proof of Theorem 3

To prove Theorem 3, we need the following two lemmas.
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Lemma 4 Assume investor i is more cautious than investor j. Then δi(S) can cross

δj(S) at most once from above in the interval S > K (S < K).

Proof: Noting that for all S < K , w′′

i (S) = w′′

j (S) = 0, from (7) we have for all S < K ,

δ′t(S) = −Ct(wt(S))δ2
t (S), t = i, j. As for all w and v, Ci(w) ≥ Cj(v), from the above

result we conclude that once δi(S) − δj(S) becomes non-positive at S = s0 < K , it

will remain so for all S ∈ (s0, K). This implies that δi(S) can cross δj(S) at most once

from above in the interval S < K . Similarly, we conclude that δi(S) can cross δj(S)

at most once from above in the interval S > K . Q.E.D.

Lemma 5 Assume that two pricing kernels φi(S) and φj(S) both price the underlying

stock correctly and cross each other twice. If one crossing happens at s1 < K and for

almost every S > K, φi(S) 6= φj(S), or one crossing happens at s2 > K and for

almost every S < K, φi(S) 6= φj(S), then the pricing kernel with a fatter right tail

prices the convex derivative strictly higher.

Proof: Without loss of generality, suppose φi(S) has a fatter right tail than φj(S). First

assume one crossing happens at s1 < K and for almost every S > K , φi(S) 6= φj(S).

As the two pricing kernels cross each other twice, apart from s1, they must also cross

at s2, where s2 6= s1.

Now construct a portfolio of the money instrument and the stock such that its

payoff is equal to the payoff of the derivative at s1 and s2. Denote the payoff of the

portfolio by L(S). We have

E(φi(S) − φj(S))a(S) = E(φi(S) − φj(S))(a(S) − L(S)). (11)

First suppose s2 ≤ K . As both crossings happen at the same side of S = K ,

for all S < K , the portfolio has the same payoff as the derivative, i.e., a(S) = L(S),

while for all S > K , the portfolio has strictly lower payoff than the derivative, i.e.,

a(S) > L(S). In the meantime, as φi(S) has a fatter right tail than φj(S), we must

have for all S > K , φi(S) ≥ φj(S). But as for almost every S > K , φi(S) 6= φj(S),

we thus conclude that for almost every S > K , φi(S) > φj(S).

It follows from (11) that

E(φi(S) − φj(S))a(S) =

∫
S>K

(φi(S) − φj(S))(a(S) − L(S))dP (S) > 0,

where P (S) is the probability distribution function. This implies that φi(S) prices the

derivative strictly higher than φj(S).
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Now suppose s2 > K . As φi(S) has a fatter right tail than φj(S), we must have

φi(S)−φj(S) ≥ 0, when S < s1 or S > s2; φi(S)−φj(S) ≤ 0, when s1 < S < s2. But

as for almost every S > K , φi(S) 6= φj(S), we thus conclude that for almost every

S > s2, φi(S) > φj(S). On the other hand, as a(S) is convex while L(S) is linear,

we must have a(S) − L(S) > 0, when S < s1 or S > s2; a(S) − L(S) < 0, when

s1 < S < s2. It follows from (11) that

E(φi(S) − φj(S))a(S) ≥

∫
S>s2

(φi(S) − φj(S))(a(S) − L(S))dP (S) > 0,

i.e., φi(S) prices the derivative strictly higher.

When one crossing happens at s1 < K and for almost every S > K , φi(S) 6= φj(S),

the proof is similar; thus it is ommited for brevity. Q.E.D.

With the help of the above two lemmas we now prove Theorem 3. We only prove

that Statement 1 implies Statements 2 and 3. The proof of the converse is very similar

to part of the proof for Theorem 1; thus it is omitted for brevity.

We first prove that Statement 1 implies Statement 3. To prove that xj ≥ 0 implies

xi ≥ 0, by contradiction, suppose that xj ≥ 0 while xi < 0. This implies that for all

S > K , w′

j(S) ≥ 0 and w′

i(S) < 0. From (5) this further implies that for all S > K ,

δi(S) < 0 and δj(S) ≥ 0. Thus we have for all S > K , δi(S) < δj(S). But from

Lemma 4, δi(S) can cross δj(S) at most once from above in the interval S < K . This

implies that δi(S) can cross δj(S) at most once from above at some s0 ≤ K in the

entire support. Applying Statement 2 of Lemma 1, we conclude that δi(S) crosses

δj(S) exactly once from above at some s0 ≤ K . Applying Statement 4 of Lemma 1,

we conclude that φi(S) crosses φj(S) exactly twice and one crossing happens at some

s1 < K . Moreover, as for all S > K , δi(S) < δj(S), we must have for almost every

S > K , φi(S) 6= φj(S). Now applying Lemma 5, we conclude that φi(S) and φj(S)

cannot both price the option correctly, which causes a contradiction. Thus xj ≥ 0

must imply xi ≥ 0. Similarly, we can prove that xj > 0 implies xi > 0. This proves

that Statement 1 implies Statement 3.

Similarly we can prove that Statement 1 implies Statement 2. Q.E.D.
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Appendix D Proof of Theorem 1

(not for publication)

D.1 Two Lemmas

We first present two lemmas. These two lemmas will be used to prove that Statement

1 of Theorem 1 implies Statement 2 of Theorem 1. They will be also used in the proof

of the converse.

As is explained in Section 3, yi (yj) denotes the units of the convex derivative

in investor i’s (j’s) portfolio while wi(S) (wj(S)) denotes investor i’s (j’s) terminal

wealth. Also note that S∗ is a point at which the derivative’s payoff function a(S) is

strictly convex.

Lemma 6 Assume either yi < 0 and yj ≥ 0 or yi ≤ 0 and yj > 0. If for all S,

Ci(wi(S)) ≥ Cj(wj(S)), then the following two statements are true.

1. Once δi(S) − δj(S) becomes non-positive at S = s0, it will remain so for all

S > s0.

2. Either there exists ε > 0 such that φi(S) 6= φj(S) for all S ∈ (S∗ − ε, S∗) ∪

(S∗, S∗ + ε), or for all S > S∗, φi(S) > φj(S).

Proof:

Note a(S) is globally convex in S and there exists at least one point, S∗, at which

a(S) is strictly convex. Thus investor j buys (sells) the derivative if and only if his

optimal strategy is convex (concave) and the convexity (concavity) is strict convex for

at least one point, S∗.

Suppose investor i holds a strictly negative position in the derivative but investor

j holds a positive position in the derivative, then wi(S) is concave, and for at least

one point, S∗, the concavity is strict; while wj(S) is convex.

Note Ri(x) is differentiable and wi(S) is piecewise (twice) differentiable; thus in

every differentiable interval, we have Equation (7), i.e., δ′i(S) = (Ri(wi(S))w′

i(S))′ =

−Ci(wi(S))δ2
i (S)+Ri(wi(S))w′′

i (S). Hence if (S, S+τ) is contained in such an interval,

then

δ′i(S + τ) − δi(S) = −

∫ s+τ

s

Ci(wi(S))δ2
i (S)dS +

∫ S+τ

S

Ri(wi(S))w′′

i (S)dS,(12)
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δ′j(S + τ) − δj(S) = −

∫ S+τ

S

Cj(wj(S))δ2
j (S)dS +

∫ S+τ

S

Rj(wj(S))w′′

j (S)dS, ,(13)

where w′′

i (S) ≤ 0 while w′′

j (S) ≥ 0.

First consider any interval I in which the payoff of the derivative a(S) is (twice)

differentiable. Suppose at one point in this interval, say S, we have δi(S) = δj(S). If

S increases slightly by a small τ , since Ci(wi(s)) ≥ Cj(wj(s)) and w′′

i (S) ≤ 0 while

w′′

j (S) ≥ 0, then from (12) and (13), δi(S) decreases faster than δj(S), and we will

have δi(S + τ) ≤ δj(S + τ). We assert that the above inequality is true not only for

small τ > 0 but also for all τ ∈ {τ |τ > 0, S + τ ∈ I}. This is because after δi(S)

becomes smaller than δj(S), if it somehow increases to the point such that they are

close to each other again, then again δi(S) decreases faster than δj(S), and δi(S) stays

smaller than δj(S) in the whole interval.

Now consider the points where a′(S) has jumps. These jumps will cause jumps in

wi(S) and wj(S) simultaneously. Since δi(S) = Ri(wi(S))w′

i(S), where Ri(wi(S)) is

positive and globally continuous while w′

i(S) is decreasing, when δi(S) jumps, it jumps

down. For the opposite reason, when δj(S) jumps, it jumps up.

Hence combining the above two cases, we conclude that once δi(S)−δj(S) becomes

non-positive at S = s0, it will remain so for all S > s0. This proves the first statement.

We now prove the second statement. If φi(S
∗) − φj(S

∗) 6= 0, then as both φi(S)

and φj(S) are continuous, there must exist ε > 0 such that φi(S) − φj(S) 6= 0 for all

S ∈ (S∗ − ε, S∗ + ε). Thus we need only consider the case where φi(S
∗) = φj(S

∗).

Suppose a(S) is twice differentiable at S∗. Then φi(S
∗) and φj(S

∗) are twice

differentiable at S∗. If δi(S
∗) 6= δj(S

∗), then there must exist ε > 0 such that φi(S) 6=

φj(S) for all S ∈ (S∗ − ε, S∗) ∪ (S∗, S∗ + ε). Thus we only need to consider the case

where δi(S
∗) = δj(S

∗). But in this case we have δ′i(S
∗) − δ′j(S

∗) is equal to

−[Ci(wi(S
∗)) − Cj(wj(S

∗))]δ2
i (S

∗) + Ri(wi(S
∗))w′′

i (S∗) − Rj(wj(S
∗))w′′

j (S∗)

≤ Ri(wi(S
∗))w′′

i (S∗) − Rj(wj(S
∗))w′′

j (S∗) < 0

The above strict inequality follows from the condition that wi(S) is strictly concave at

S∗ while wj(S) is convex at S∗. This strict inequality implies that δi(S) crosses δj(S)

at S∗, but accroding to the third statement of Lemma 1, because φi(S
∗) = φj(S

∗),

this is ruled out.

Now suppose a(S) is not twice differentiable at S∗. If δi(S
∗−) 6= δj(S

∗−) and

δi(S
∗+) 6= δj(S

∗+), then as δi(S) and δj(S) are continuous in intervals (S∗ − ε, S∗)
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and (S∗, S∗ + ε) for some ε > 0, it is clear that there must exist ε > 0 such that

φi(S) − φj(S) 6= 0 for all S ∈ (S∗ − ε, S∗) ∪ (S∗, S∗ + ε). Thus we need only consider

the case where either δi(S
∗−) = δj(S

∗−) or δi(S
∗+) = δj(S

∗+).

Suppose δi(S
∗+) = δj(S

∗+). In this case as δi(S) = Ri(wi(S))w′

i(S) and δj(S) =

Rj(wj(S))w′

j(S), where w′

i(S) jumps down at S = S∗ while w′

j(S) strictly jumps up at

S = S∗, we must have δi(S
∗−) > δj(S

∗−). As an immediate consequence of the first

statement, we can conclude that δi(S) crosses δj(S) once at S = S∗. But according

to the third statement of Lemma 1, because φi(S
∗) = φj(S

∗), this is ruled out.

Now suppose δi(S
∗−) = δj(S

∗−).

Similar to the above case, we must have δi(S
∗+) < δj(S

∗+). Thus from the first

statement for all S > S∗, δi(S) ≤ δj(S). Moreover, as δi(S) and δj(S) are differen-

tiable at the points near S∗ there must exist ε > 0 such that for all S ∈ (S∗, S∗ + ε),

δi(S
∗+) < δj(S

∗+). Applying Equation (9) we find that for all S > S∗, φi(S) > φj(S).

This completes the proof. Q.E.D.

Lemma 7 Assume two pricing kernels φi(S) and φj(S) both price the underlying

stock correctly. Assume either there exists ε > 0 such that φi(S) 6= φj(S) for all

S ∈ (S∗ − ε, S∗) ∪ (S∗, S∗ + ε), or for all S > S∗, φi(S) > φj(S). If the two pricing

kernels intersect each other twice, then the pricing kernel with a fatter right tail prices

the derivative whose payoff is strictly convex at S∗ strictly higher.

Proof:

Without loss of generality, suppose φi(S) has a fatter right tail. As the two pricing

kernels intersect exactly twice, there exist S1 and S2, where S1 < S2, such that

φi(S) − φj(S) ≥ 0, when S < S1, or S > S2; φi(S) − φj(S) ≤ 0, when S1 < S < S2.

Now construct a portfolio of the money instrument and the stock such that its

payoff is equal to the payoff of the convex derivative at S1 and S2. Denote the payoff

of the portfolio by L(S). As L(S) is linear and both φi(S) and φj(S) price the

underlying stock correctly, we must have

E(φi(S) − φj(S))L(S) = 0.

It follows that

E(φi(S) − φj(S))a(S) = E(φi(S) − φj(S))(a(S) − L(S)).
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If we notice that a(S) is convex while L(S) is linear, then it can be easily verified that

φi(S) − φj(S) and a(S) − L(S) can never have opposite signs.

Moreover, as is assumed, either there exists ε > 0 such that φi(S) 6= φj(S) for

all S ∈ (S∗ − ε, S∗) ∪ (S∗, S∗ + ε), or for all S > S∗, φi(S) > φj(S). Consider the

first case. from the strict concavity of wi(S) at S = S∗, there exists either interval

(S∗ − ε, S∗) or interval (S∗, S∗ + ε), where ε > 0, such that a(S) − L(S) 6= 0 on the

entire interval. Thus there must exist ε > 0 such that we have a(S) − L(S) 6= 0 and

φi(S) − φj(S) 6= 0 for all S ∈ (S∗ − ε,S∗) or for all S ∈ (S∗, S∗ + ε). This, together

with the fact that φi(S)−φj(S) and a(S)−L(S) can never have opposite signs, implies

that the expectation E[(φi(S) − φj(S))a(S)] is strictly positive, i.e., φi(S) prices the

derivative strictly higher.

Now consider the second case. As crossings between φi(S) and φj(S) only happen

to the left of S∗, the strict convexity of a(S) at S∗ implies that there must exist ε > 0

such that a(S) − L(S) 6= 0 for all S ∈ (S∗, S∗ + ε). But as it is assumed that for all

S > S∗, φi(S) > φj(S), this again implies that the expectation E[(φi(S)−φj(S))a(S)]

is strictly positive, i.e., φi(S) prices the derivative strictly higher. Q.E.D.

D.2 Statement 1 ⇒ Statement 2

With the help of the above two lemmas we can now prove that Statement 1 of Theorem

1 implies Statement 2 of Theorem 1:

By contradiction, suppose investor i holds a negative position in the derivative

(yi ≤ 0) while investor j holds a strictly positive position in the derivative (yj > 0) or

investor i holds a strictly negative position in the derivative (yi < 0) while investor j

holds a positive position in the derivative (yj ≥ 0).

From the first statement of Lemma 6 we know that δi(S) − δj(S) changes sign

at most once. But according to the second statement of Lemma 1, it must change

sign at least once. Thus δi(S) − δj(S) changes sign exactly once. From the fourth

statement of Lemma 1, we conclude that φi(S) − φj(S) changes sign exactly twice.

Moreover, from Lemma 6, either there exists ε > 0 such that φi(S) 6= φj(S) for all

S ∈ (S∗ − ε, S∗) ∪ (S∗, S∗ + ε), or, for all S > S∗, φi(S) > φj(S). Now applying

Lemma 7, we find that the two pricing kernels cannot both correctly price the deriva-

tive, whose payoff is strictly convex at S∗. This causes a contradiction. Q.E.D.
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D.3 Statement 2 ⇒ Statement 1

Before we start to prove that Statement 2 of Theorem 1 implies Statement 1 of The-

orem 1, consider the following explanation. Recall that we have assumed that the

expected-utility-maximizing investors in the market are strictly risk-averse. In the

rare case where the current prices of the stock and the derivative are equal to the risk

neutral prices, a strictly risk averse investor will optimally hold zero investment in

both the stock and the derivative. Thus if we use Sr and ar to denote the risk neutral

prices of the stock and the derivative respectively, when (S0, a0) = (Sr , ar), a solution

to (3) is (xi, yi) = (0, 0). We now show that for those (S0, a0) which are near (Sr , ar),

solutions to (4) exist too. We have the following lemma.

Lemma 8 The following two statements are true.

1. There exists a neighborhood of (0, 0), B, such that for any (xi, yi) ∈ B, there

exists (S0, a0) such that (xi, yi) is the solution to (4).

2. There exists a neighborhood of (Sr , ar), A, such that for any (S0, a0) ∈ A, a

solution to (4) exists.

Proof:

We first prove Statement 1. Since the support of the stock price distribution is

a bounded subinterval of [0, +∞), without loss generality denote it by [a, b]. As the

support is bounded the prices of the stock and the derivative under the first stochastic

dominance rule must be bounded. Let S and S̄ be the lower and upper bounds of

the stock price; let a and ā be the lower and upper bounds of the derivative price.16

Consider the problem in which given a pair of (xi, yi), we want to solve (4) for (S0, a0).

Define the function

g(S0 , a0) =
1

1 + r
(E[φi(wi(S))S], E[φ(wi(S))a(S)]).

For any pair of (xi, yi) which is close enough to (0, 0), this function is well defined on

[S, S̄] × [a, ā]. As utility functions are three times differentiable, g(.) is obviously a

sequentially continuous function, thus a continuous function of a non-empty, closed,

16It is straightforward that S = a
1+r

, S = b
1+r

, a = minx∈[a,b]
a(x)
1+r

, and a =

maxx∈[a,b]
a(x)
1+r

.
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bounded, convex set [S, S̄] × [a, ā] into itself. According to the well-known Brouwer’s

Fixed Point Theorem, there is always a fixed point. Thus a solution of (S0, a0) to (4)

always exists. This proves the first statement.

We now prove the second statement. Define a function f(.) on [0, +∞) × [0, +∞)

as follows. For a pair of stock price and derivative price (S0, a0), if there is a solution

(xi, yi) to (4), then f(S0, a0) = (xi, yi). Note as is well-known, because of the strict

concavity of utility function ui(w), the solution (xi, yi) is unique; thus the function

is well defined. As utility functions are three times differentiable, f(.) is obviously

sequentially continuous. But in a metric space sequential continuity and continuity

are equivalent; thus f(.) is continuous.

From the first statement we conclude that there is a neighborhood of (0, 0), B,

such that B is a set of images under function f(.). Since f(.) is continuous and B is

open, the preimage of B is also open. Thus as f(Sr, ar) = (0, 0) there must exist a

neighborhood of (Sr , ar), A, such that for any (S0, a0) ∈ A, a solution to (4) exists.

Q.E.D.

With the help of the above lemma we can now start to prove that Statement 2

of Theorem 1 implies Statement 1 of Theorem 1. Note that if there does not exist a

constant C such that for all w and v, Ci(w) ≥ C ≥ Cj(v), then there must exist some

w0 and v0 such that Ci(w0) < Cj(v0). As all utility functions are assumed to be three

times continuously differentiable, cautiousness is continuous; Thus there must be a

neighborhood of w0, A, a neighborhood of v0, B, and a constant α, such that for all

w ∈ A and all v ∈ B, Ci(w) < α < Cj(v). If we can somehow make sure that investor

i’s terminal wealth is contained in A while investor j’s terminal wealth is contained

in B, then using an argument very similar to the proof that Statement 1 of Theorem

1 implies Statement 2 of Theorem 1, we can show a situation where it happens that

investor j optimally holds a long position in the derivative while i does not. This is the

idea we use to prove that Statement 2 of Theorem 1 implies Statement 1 of Theorem 1.

We need only show that if there does not exist a constant C such that for all w and

v, Ci(w) ≥ C ≥ Cj(v) then there is a set of wi0, wj0, S0, and a0 such that investor j

optimally holds a long position in the derivative while i does not.
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Applying the first statement of Lemma 8, we conclude that there is a series:

{(xn
i , 0)|n = 1, 2, ...}, where xn

i is strictly decreasing in n, limn→∞ xn
i = 0, and for

all n, (xn
i , 0) is the solution to (4) corresponding to (S0, a0) = (S0n, a0n). Obviously

we have

lim
n→∞

S0n = Sr and lim
n→∞

a0n = ar .

According to the second statement of Lemma 8, there exists a neighborhood of

(Sr , ar), A, such that for any (S0, a0) ∈ A, the solution to problem (3) exists. Without

loss of generality assume for all n, (S0n, a0n) ∈ A. This implies that given the series

{(S0n, a0n)|n = 1, 2, ...}, there exist a series of solutions {(xjn, yjn)|n = 1, 2, ...} to

problem (3) for investor j. Since limn→∞(S0n, a0n) = (Sr , ar) from the continuity of

the solutions we have

lim
n→∞

(xjn, yjn) = (0, 0).

As is pointed out in the paragraph preceding this proof, since there does not exist

a constant C such that for all w and v, Ci(w) ≥ C ≥ Cj(v), from the continuity of

Ci(w) and Cj(v), there must be w0, v0, a neighborhood of w0, A, a neighborhood of v0,

B, and a constant α, such that for all w ∈ A and all v ∈ B, Ci(w) < α < Cj(v). Let

wi0 = w0/(1 + r) and wj0 = v0/(1 + r).17 Use win(S) to denote investor i’s terminal

wealth corresponding to trading strategy (xi, yi) = (xin, yin), which is defined in

Equation (1). Then since the support of the stock price distribution, [a, b], is bounded,

there must exist N > 0 such that for all n > N , we have that for all S ∈ [a, b],

win(S) ∈ A and wjn(S) ∈ B.

This implies that for all S ∈ [a, b], Ci(win(S)) < α < Cj(wjn(S)). Now we assert

that for all n > N we must have yjn > 0. By contradiction, suppose for some n > N ,

yjn ≤ 0.

Applying the first statement of Lemma 6, we know that δi(S)− δj(S) changes sign

at most once. But according to the second statement of Lemma 1, it must change sign

at least once. Thus δi(S)− δj(S) changes sign exactly once. From the third statement

of Lemma 1, we conclude that φi(S) − φj(S) changes sign twice. Moreover, from

the second statement of Lemma 6, there exists a neighborhood of S∗, A, such that

φi(S) − φj(S) 6= 0 for all S ∈ A \ {S∗}. Now applying Lemma 7, we find that the two

pricing kernels cannot both price the derivative correctly. This causes a contradiction.

17To disallow negative wealth, we need only restrict the natural domains of the utility

functions to [0,+∞). This restriction does not have any effect on the proof.
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Hence for n > N we must have yjn > 0. Thus we have a situation where investor

j holds a (strictly) positive position in the derivative, but investor i does not do so.

This completes the proof. Q.E.D.
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